Abstract

The use of nonlinear elements with memory as photonic computing components has seen a huge surge in interest in recent years with the rise of artificial intelligence and machine learning. A key component is the nonlinear element itself. A class of materials known as phase change materials has been extensively used to demonstrate the viability of such computing. However, such materials continue to have relatively slow switching speeds, and issues with cyclability related to phase segregation of phase change alloys. Here, using antimony (Sb) thin films with thicknesses less than 5 nm we demonstrate reversible, ultrafast switching on an integrated photonic platform with retention time of tens of seconds. We use subpicosecond pulses, the shortest used to switch such elements, to program seven distinct memory levels. This portends their use in ultrafast nanophotonic applications ranging from nanophotonic beam steerers to nanoscale integrated elements for photonic computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.