Abstract

A number of polysulfonated molecules have demonstrated their interaction with fibroblast growth factor (FGF), hampering their binding to its receptors (low affinity heparan sulfate proteoglycans (HSPG) and high affinity tyrosine kinase FGF receptors) and inhibiting the intracellular signaling and mitogenic response in cultured endothelial cells. The aim of this work was the synthesis and characterization of new copolymers based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with antiproliferative activity for antitumoral applications. N-Vinylpyrrolidone (VP) or butyl acrylate (BA) was copolymerized with the sulfonated monomer to obtain macromolecules with different hydrophilic/hydrophobic balance and distribution of the sulfonated groups within the macromolecules. In vitro cell culture proliferative assays showed that monomer distribution affected the inhibition of the proliferative action of FGF. Reactivity ratios of the systems were determined following the free radical copolymerization by in situ (1)H NMR, and the correlation of the monomer sequence distribution with the bioactivity is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call