Abstract

Extended-Spectrum-Cephalosporin (ESC)-resistant Enterobacteriaceae have widely spread in all settings worldwide. In animals, Extended-Spectrum Beta-Lactamase (ESBL) producers have been frequently identified in veal calves. The objectives of this study were to investigate the trends in the ESBL load and antimicrobial resistance (AMR) proportions, and antimicrobial usages (AMU) in veal calves during the fattening process. Ten fattening farms were selected and 50 animals per farm were sampled. AMR was assessed in bacteria from the dominant flora (collected on non-selective MacConckey agar) and in ESBL/AmpC-carrying bacteria from the subdominant flora (selected on ChromID ESBL selective plates) upon arrival and 5–6 months later before slaughter. The number and types of treatments during fattening were also collected. Rates of ESBL-producing E. coli from the subdominant flora significantly decreased in all farms (arrival: 67.7%; departure: 20.4%) whereas rates of multidrug-resistant E. coli from the dominant flora have significantly increased (arrival: 60.2%; departure: 67.2%; p = 0.025). CTX-M-1 was the most frequently identified ESBL enzyme (arrival: 59.3%; departure: 52.0%). The plasmid-mediated mcr-1 gene was also identified occasionally. In parallel, levels of resistances to non-critically important antimicrobials were already high upon arrival but have still further increased over time until slaughter. Our study also highlighted that if only ESBL-producing isolates were monitored, it might have led to a partial (and partly false) picture of AMR rates globally decreasing during the fattening period. The mean number of antimicrobial treatments per calf (NTPC) was 8.75 but no association between AMU and AMR was evidenced. Most ESBL producers were clonally unrelated suggesting multiple sources and not cross-contaminations among calves during transportation. Feeding milk containing antimicrobial residues to veal calves is hypothesized to explain the high ESBL loads in animals at the entrance on farms.

Highlights

  • Extended-Spectrum-Cephalosporin (ESC)-resistant Enterobacteriaceae have widely spread in the human, animal and environmental reservoirs thanks to the epidemic success of Extended-Spectrum and AmpC Beta-Lactamase (ESBLs/AmpC) genes, plasmids and clones

  • This study firstly showed that the proportion of Extended-Spectrum Beta-Lactamase (ESBL)-producing E. coli carriage in the sub-dominant gut flora of veal calves was considerably high upon arrival on fattening farms, ranging from 48.0 to 82.0%

  • Such a very high fecal shedding of ESBL producers most likely reflects their selection in the farms where calves were born

Read more

Summary

Introduction

Extended-Spectrum-Cephalosporin (ESC)-resistant Enterobacteriaceae have widely spread in the human, animal and environmental reservoirs thanks to the epidemic success of Extended-Spectrum and AmpC Beta-Lactamase (ESBLs/AmpC) genes, plasmids and clones. Even though the distribution of ESC resistance genes in different settings still differs to a certain extent, such as the blaCTX−M−15 ESBL gene mostly identified in humans, horizontal gene transfers across sectors have been documented extensively, making the whole epidemiological picture more and more complex. In this respect, the food chain has been regarded as a potential source of human colonization/infection by ESC-resistant Enterobacteriaceae (Leverstein-van Hall et al, 2011; Kluytmans et al, 2013; Huijbers et al, 2014). For risk assessment purposes, data are required from all sectors along the food chain, i.e., from the birth of the animals in farms up to the different food processing and consumption steps

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call