Abstract

The use of antimicrobial peptides (AMPs)-functionalized titanium implants is an efficient method for preventing bacterial infection. However, the attachment of AMPs to the surface of titanium implants remains a challenge. In this study, a "clickable" titanium surface was developed by using a silane coupling agent with an alkynyl group. The antimicrobial titanium implant was then constructed through the reaction between the "clickable" surface and azido-AMPs (PEG-HHC36:N3-PEG12-KRWWKWWRR) via click chemistry of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Such an antimicrobial titanium implant, with an AMP density of 897.4 ± 67.3 ng/cm2 (2.5 ± 0.2 molecules per nm2) on the surface, exhibited good and stable antimicrobial activity, inhibited 90.2% of Staphylococcus aureus and 88.1% of Escherichia coli after 2.5 h of incubation, and even inhibited 69.5% of Staphylococcus aureus after 4 days of degradation. The CCK-8 assay indicated that the antimicrobial titanium implant exhibited negligible cytotoxicity to mouse bone mesenchymal stem cells. In vivo assay illustrated that this implant could kill 78.8% of Staphylococcus aureus after 7 days. This method has great potential for the preparation of antimicrobial titanium implants and the prevention of infections in the clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call