Abstract

Enteric fever is a major global problem. Emergence of antimicrobial resistance threatens to render current treatments ineffective. The current study was attempted to investigate the effect of biofield treatment on Salmonella paratyphi A (S. paratyphi A) in terms of antimicrobial susceptibility assay, biochemical characteristics and biotyping. S. paratyphi A strain were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 9150). The study was conducted in revived and lyophilized state of S. paratyphi A. Both revived (Group; Gr. II) and lyophilized (Gr. III) strain of S. paratyphi A were subjected to Mr. Trivedi’s biofield treatment. Revived treated cells was assessed on day 5 and day 10, while lyophilized treated cells assessed on day 10 after biofield treatment with respect to control (Gr. I). The antimicrobial susceptibility of S. paratyphi A showed significant (60%) alteration in revived treated cells (Gr. II) on day 10 as compared to control. The MIC values of S. paratyphi A also showed significant (53.12%) alteration in Gr. II and on day 10 while, no alteration was found in Gr. on day 5 as compared to control. It was observed that overall 18.18% biochemical reactions were altered in the treated groups with respect to control. Moreover, biotype numbers were substantially changed in Gr. II, on day 5 (53001040, S. paratyphi A), on day 10 (57101050, Citrobacter freundii complex) as compared to control (53001000, S. paratyphi A). Besides, biotype number was also changed in Gr. III (53001040, S. paratyphi A) as compared to control. The overall result suggested that biofield treatment had significant impact on S. paratyphi A in Gr. II on day 10 with respect to antimicrobial susceptibility, MIC values and biotype number.

Highlights

  • Enteric fever is a major public health problem in India

  • The antimicrobial susceptibility, minimum inhibitory concentration (MIC) values, biochemical reactions and biotype number were estimated with the help of MicroScan Walk-Away® (Dade Behring Inc., West Sacramento, CA, USA) using negative breakpoint combo 30 (NBPC 30) panel with respect to control sample

  • II) of S. paratyphi A showed a significant (60%) alteration in antimicrobial sensitivity pattern on day 10 while did not show any alteration on day 5 as well as in Gr

Read more

Summary

Introduction

Salmonella enterica (S. enterica) is motile, non-lactose fermenting, non-spore forming, and Gram-negative rod shape bacterium. It can ferment glucose with production of acid and gas. The subspecies of enterica are three serotypes such as paratyphi A, B, and C that cause paratyphoid fever [1]. Salmonellae mainly causes infection through contaminated food or drink to the gut first through this protein enter into bloodstream. S. enterica serovar paratyphi A, B, or C are estimated to cause 5.5 million cases of enteric fever each year [4]. In the United States, paratyphoid fever is uncommon, while, an estimated 5.4 million outbreaks occur in East Asia in 2000 [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call