Abstract

BackgroundAntimicrobial resistance (AMR) and genetic determinants of resistance of N. gonorrhoeae isolates from Hefei, China, were characterized adding a breadth of information to the molecular epidemiology of gonococcal resistance in China.Methods126 N. gonorrhoeae isolates from a hospital clinic in Hefei, were collected between January, 2014, and November, 2015. The minimum inhibitory concentration (MIC) of N. gonorrhoeae isolates for seven antimicrobials were determined by the agar dilution method. Isolates were tested for mutations in penA and mtrR genes and 23S rRNA, and also genotyped using N. gonorrhoeae multi-antigen sequence typing (NG-MAST).ResultsAll N. gonorrhoeae isolates were resistant to ciprofloxacin; 81.7% (103/126) to tetracycline and 73.8% (93/126) to penicillin. 39.7% (50/126) of isolates were penicillinase producing N. gonorrhoeae (PPNG), 31.7% (40/126) were tetracycline resistant N. gonorrhoeae (TRNG) and 28.6% (36/126) were resistant to azithromycin. While not fully resistant to extended spectrum cephalosporins (ESCs), a total of 14 isolates (11.1%) displayed decreased susceptibility to ceftriaxone (MIC ≥ 0.125 mg/L, n = 10), cefixime (MIC ≥ 0. 25 mg/L, n = 1) or to both ESCs (n = 3). penA mosaic alleles XXXV were found in all isolates that harbored decreased susceptibility to cefixime, except for one. Four mutations were found in mtrR genes and mutations A2143G and C2599T were identified in 23S rRNA. No isolates were resistant to spectinomycin. Gonococcal isolates were distributed into diverse NG-MAST sequence types (STs); 86 separate STs were identified.ConclusionsN. gonorrhoeae isolates from Hefei during 2014–2015, displayed high levels of resistance to antimicrobials that had been recommended previously for treatment of gonorrhea, e.g., penicillin, tetracycline and ciprofloxacin. The prevalence of resistance to azithromycin was also high (28.6%). No isolates were found to be fully resistant to spectinomycin, ceftriaxone or cefixime; however, 11.1% isolates, overall, had decreased susceptibility to ESCs.

Highlights

  • Antimicrobial resistance (AMR) and genetic determinants of resistance of N. gonorrhoeae isolates from Hefei, China, were characterized adding a breadth of information to the molecular epidemiology of gonococcal resistance in China

  • Genetic determinants associated with decreased susceptibility to extended spectrum cephalosporins (ESCs) and resistance of N. gonorrhoeaeto azithromycin Amplification of penA and mtrR genes and 23S rRNA were performed using published primers and conditions [18,19,20]. 14 gonococcal isolates with decreased susceptibility to ceftriaxone or cefixime were tested for penA mutations, including 3 isolates that had decreased susceptibility to both cefixime and ceftriaxone; all isolates were tested for mutations in mtrR and 41strains were tested for 23S rRNA mutations

  • Resistance to penicillin and tetracycline was 73.8% (93/ 126) and 81.7% (103/126), respectively; all isolates were resistant to ciprofloxacin. 28.6% (36/126) of isolates were resistant to azithromycin; among them,36.1% (13/36) displayed high-level azithromycin resistance (MIC ≥ 256 mg/L)

Read more

Summary

Introduction

Antimicrobial resistance (AMR) and genetic determinants of resistance of N. gonorrhoeae isolates from Hefei, China, were characterized adding a breadth of information to the molecular epidemiology of gonococcal resistance in China. WHO estimated that 78.3 million of new cases of gonorrhea occurred among adults globally in 2012 [1].100, 245 cases of gonorrhea were reported nationally by the China Centers for Disease Control and Prevention in 2015, making it the fifth most commonly reported communicable disease in China [2]. At this time there are no effective vaccines for gonococcal infections and antimicrobial treatment continues to be the mainstay of control. Resistance to azithromycin threatens efficacy of dual antimicrobial therapy (ESCs plus azithrothmycin) that may result in decreased treatment options and enhance the possibility of untreatable infection

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call