Abstract

BackgroundAntimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major public health concern worldwide. In Vietnam, knowledge regarding N. gonorrhoeae prevalence and AMR is limited, and data concerning genetic characteristics of N. gonorrhoeae is totally lacking. Herein, we investigated the phenotypic AMR (previous, current and possible future treatment options), genetic resistance determinants for extended-spectrum cephalosporins (ESCs), and genotypic distribution of N. gonorrhoeae isolated in 2011 in Hanoi, Vietnam.MethodsN. gonorrhoeae isolates from Hanoi, Vietnam isolated in 2011 (n = 108) were examined using antibiograms (Etest for 10 antimicrobials), Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST), and sequencing of ESC resistance determinants (penA, mtrR and penB).ResultsThe levels of in vitro resistance were as follows: ciprofloxacin 98%, tetracycline 82%, penicillin G 48%, azithromycin 11%, ceftriaxone 5%, cefixime 1%, and spectinomycin 0%. The MICs of gentamicin (0.023-6 mg/L), ertapenem (0.002-0.125 mg/L) and solithromycin (<0.016-0.25 mg/L) were relatively low. No penA mosaic alleles were found, however, 78% of the isolates contained an alteration of amino acid A501 (A501V (44%) and A501T (34%)) in the encoded penicillin-binding protein 2. A single nucleotide (A) deletion in the inverted repeat of the promoter region of the mtrR gene and amino acid alterations in MtrR was observed in 91% and 94% of the isolates, respectively. penB resistance determinants were detected in 87% of the isolates. Seventy-five different NG-MAST STs were identified, of which 59 STs have not been previously described.ConclusionsIn Vietnam, the highly diversified gonococcal population displayed high in vitro resistance to antimicrobials previously recommended for gonorrhoea treatment (with exception of spectinomycin), but resistance also to the currently recommended ESCs were found. Nevertheless, the MICs of three potential future treatment options were low. It is essential to strengthen the diagnostics, case reporting, and epidemiologic surveillance of gonorrhoea in Vietnam. Furthermore, the surveillance of gonococcal AMR and gonorrhoea treatment failures is imperative to reinforce. Research regarding novel antimicrobial treatment strategies (e.g., combination therapy) and new antimicrobials is crucial for future treatment of gonorrhoea.

Highlights

  • Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major public health concern worldwide

  • For gentamicin (MIC range: 0.023–6 mg/L), ertapenem (0.002–0.125 mg/L) and solithromycin ( 0.064)*

  • N. gonorrhoeae isolated in Vietnam during 2011 showed a high genetic diversity and high levels of in vitro resistance to antimicrobials previously recommended for gonorrhoea treatment, such as ciprofloxacin, tetracycline, penicillin G and azithromycin

Read more

Summary

Introduction

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major public health concern worldwide. Ceftriaxone is the last remaining option for empirical first-line antimicrobial monotherapy of gonorrhoea In this developing situation, including the fear that gonorrhoea may become untreatable, the WHO [18], European Centre for Disease Prevention and Control (ECDC) [19] and Centers for Disease Control and Prevention (CDC), USA [20] have published action/response plans to combat and mitigate the widespread of multidrug-resistant gonorrhoea. Even if these action/response plans will be fully implemented it is vital to develop new treatment strategies and novel antimicrobials. Gentamicin, ertapenem and solithromycin have been previously investigated and may be effective treatment alternatives, in antimicrobial monotherapy and in combination therapy [6,21,22,23,24,25]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call