Abstract

ObjectiveBacterial meningitis is a medical emergency associated with high mortality rates. Cerebrospinal fluid (CSF) culture is the “gold standard” for diagnosis of meningitis and it is important to establish the susceptibility of the causative microorganism to rationalize treatment. The Namibia Standard Treatment Guidelines (STGs) recommends initiation of empirical antibiotic treatment in patients with signs and symptoms of meningitis after taking a CSF sample for culture and sensitivity. The objective of this study was to assess the antimicrobial sensitivity patterns of microorganisms isolated from CSF to antibiotics commonly used in the empirical treatment of suspected bacterial meningitis in Namibia.MethodsThis was a cross-sectional descriptive study of routinely collected antibiotic susceptibility data from the Namibia Institute of Pathology (NIP) database. Results of CSF culture and sensitivity from January 1, 2009 to May 31, 2012, from 33 state hospitals throughout Namibia were analysed.ResultsThe most common pathogens isolated were Streptococcus species, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and Escherichia coli. The common isolates from CSF showed high resistance (34.3% –73.5%) to penicillin. Over one third (34.3%) of Streptococcus were resistance to penicillin which was higher than 24.8% resistance in the United States. Meningococci were susceptible to several antimicrobial agents including penicillin. The sensitivity to cephalosporins remained high for Streptococcus, Neisseria, E. coli and Haemophilus. The highest percentage of resistance to cephalosporins was seen among ESBL K. pneumoniae (n = 7, 71%–100%), other Klebsiella species (n = 7, 28%–80%), and Staphylococcus (n = 36, 25%–40%).ConclusionsThe common organisms isolated from CSF were Streptococcus Pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and E. coli. All common organisms isolated from CSF showed high sensitivity to cephalosporins used in the empirical treatment of meningitis. The resistance of the common isolates to penicillin is high. Most ESBL K. pneumoniae were isolated from CSF samples drawn from neonates and were found to be resistant to the antibiotics recommended in the Namibia STGs. Based on the above findings, it is recommended to use a combination of aminoglycoside and third-generation cephalosporin to treat non–ESBL Klebsiella isolates. Carbapenems (e.g., meropenem) and piperacillin/tazobactam should be considered for treating severely ill patients with suspected ESBL Klebsiella infection. Namibia should have a national antimicrobial resistance surveillance system for early detection of antibiotics that may no longer be effective in treating meningitis and other life-threatening infections due to resistance.

Highlights

  • Bacterial meningitis is an acute infection in which the meninges, the subarachnoid space, and the brain parenchyma are all frequently involved in the inflammatory reaction

  • The common organisms isolated from cerebrospinal fluid (CSF) were Streptococcus Pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and E. coli

  • Most Extended spectrum beta lactamase (ESBL) K. pneumoniae were isolated from CSF samples drawn from neonates and were found to be resistant to the antibiotics recommended in the Namibia Standard Treatment Guidelines (STGs)

Read more

Summary

Introduction

Bacterial meningitis is an acute infection in which the meninges, the subarachnoid space, and the brain parenchyma are all frequently involved in the inflammatory reaction. This disease is characterized by severe headache, fever, intolerance to light and sound and rigidity of muscles, especially those of the neck. In patients suspected of having bacterial meningitis, cerebrospinal fluid (CSF) should be obtained for cultures and empirical antimicrobial therapy initiated without delay [2,3]. Diagnosis of bacterial meningitis is confirmed by CSF culture the “gold standard” for diagnosis of meningitis and it is important to obtain the antimicrobial susceptibility of the causative microorganism to rationalize treatment [4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.