Abstract

BackgroundCurrently, antibiotic-resistant strains of Enterococcus are considered to be one of the critical health challenges globally. This study aimed to investigate the antibiotic susceptibility pattern, biofilm formation capacity, and virulence genes of enterococci isolated from different sources.MethodsIn this cross-sectional study, environmental and fecal samples were collected from the hospital environment, volunteers, and hospital staff from October 2018 to August 2019. The isolates were identified by morphological and biochemical tests (gram staining, catalase, bile resistance, esculin hydrolysis, carbohydrate fermentation, growth in 6.5% NaCl, Pyrrolidonyl arylamidase, arginine dehydrolase), and PCR for ddl gene. An antimicrobial susceptibility test was performed by the standard disk agar diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Quantitative microplate assays were used to assess biofilm production. The bacterial DNAs were extracted by alkaline lysis method and polymerase chain reaction technique was used detect the esp, ace, and efaA virulence genes.ResultsOut of 145 isolates, 84 (57.9%) were identified as E. faecalis and 61 (42.1%) as E. faecium. Resistance to kanamycin and quinupristin-dalfopristin was 82.1% (69/84) and 85.7% (72/84), respectively, in E. faecalis isolates. Out of 61 E. faecalis isolates, 38 (62.4%) were resistant to kanamycin. Among the E. faecalis isolates, esp was the most dominant virulence gene (73.80%), followed by efaA, and ace, which were detected in 60.71%, and 30.95% isolates, respectively. In total, 68.27% of the strains were biofilm producers. Further, esp and efaA genes were more frequently found among E. faecalis strains with moderate and strong biofilm biomass.ConclusionsAccording to the findings of our study, enterococci strains isolated from different samples possess distinctive patterns of virulence genes. The esp, ace, and efaA genes were more prevalent among E. faecalis than E. faecium. Besides, the high level antibiotic resistance of normal flora and environmental enterococci strains is alarming the researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.