Abstract

The bacterial contamination of raw and processed meat products with resistant pathogens was studied. The raw samples included sheep (40), goat (40), pork (120), beef (80), and chicken (19) meat, and the processed samples included turkey filets (33), salami (8), readymade mincemeat (16), stuffing (22), and roast-beef (50). The samples were collected from retail shops in Northwestern Greece over a period of 3 years. The isolated pathogens were evaluated for susceptibilities to 19 antimicrobial agents used in humans. Out of 428 samples, 157 strains of Escherichia coli, 25 of Yersinia enterocolitica, 57 of Staphylococcus aureus, 57 of Enterococcus spp., 4 of Salmonella spp., and 3 of Campylobacter jejuni were isolated. Among the isolates 14.6% of the E. coli, 10.5% of S. aureus, 4% of Y. enterocolitica, 25% of Salmonella spp., and 42.1% of Enterococcus spp. were susceptible to antibiotics. E. coli from chicken exhibited high rates of resistance to ciprofloxacin (62.5%) followed by lamb/goat (10.9%), pork (15.7%), and beef (27.9%) meat. Resistance to nitrofurantoin dominated in the lamb/goat isolates (60%). Resistance to tetracycline predominated in pork (68.2%) and chicken (62.5%), and resistance to aminoglycosides dominated in lamb/goat meat isolates. S. aureus resistance to clindamycin predominated in lamb/goat isolates (50%), whereas resistance to ciprofloxacin predominated in the pork strains, but no resistance to methicillin was observed. Of the enterococci isolates 21.1% were resistant to vancomycin. High resistance to ampicillin (96%) was observed in Y. enterocolitica and all of the C. jejuni isolates were resistant to ampicillin, cephalothin, and cefuroxime. These results indicate that meat can be a source of resistant bacteria, which could potentially be spread to the community through the food chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.