Abstract

PurposeThis study set out to determine the antimicrobial resistance trends of Haemophilus influenzae isolates from pediatric hospitals in Mainland China, which would provide basis for clinical treatment. MethodsThe Infectious Disease Surveillance of Pediatrics (ISPED) collaboration group conducted this study. H. influenzae strains isolated from nine pediatric hospitals in Mainland China were included. Disk diffusion method was used for antimicrobial susceptibility test. Cefinase disc was used for detection of β-lactamase. ResultsIn total, 13810 H. influenzae isolates were included during 2017–2019: 93.17% of which were from respiratory tract specimens, 4.63% from vaginal swabs, 1.10% from secretion, and 1.10% from others. Of all strains, 63.32% isolates produced β-lactamase; 8.22% isolates were β-lactamase-negative and ampicillin-resistant (BLNAR). The resistance to sulfamethoxazole-trimethoprim was 70.98%, followed by resistance to ampicillin (69.37%), cefuroxime (51.35%), ampicillin-sulbactam (38.82%), azithromycin (38.21%), amoxicillin-clavulanate (35.28%). More than 90% of H. influenzae isolates were susceptible to ceftriaxone, cefotaxime, meropenem, levofloxacin and chloramphenicol. The resistance rate of ampicillin and azithromycin in H. influenzae showed an increasing trend through the years. Statistically significant differences in antibiotic-resistance rates of all the antibiotics except chloramphenicol were found in different regions. The major Multi-Drug Resistance pattern was resistant to β-lactams, macrolides, and sulfonamides. ConclusionsThere is a rising trend of resistance rate of ampicillin and azithromycin in H. influenzae. Antimicrobial resistance of H. influenzae deserves our ongoing attention. Third-generation cephalosporin could be the preferred treatment option of infections caused by ampicillin-resistant H. influenzae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.