Abstract

Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E. faecium strains were positive for any of the virulence genes tested. The clonal relationships among the 22 E. faecium strains were determined by pulsed-field gel electrophoresis (PFGE) typing. A total of 10 PFGE patterns were observed with 22 strains and a few of the strains from different probiotic products had identical (100% Dice similarity) PFGE patterns. In conclusion, the E. faecium strains in a few commercial probiotics exhibited AMR to medically-important antimicrobials, but none contained virulence genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.