Abstract

BackgroundPoultry remains one of the most important reservoir for zoonotic multidrug resistant pathogens. The global rise of antimicrobial resistance in Gram-negative bacteria is of reasonable concern and demands intensified surveillance.MethodsIn 2016, 576 cloacal swabs were collected from 48 broiler farms located in five governorates in northern Egypt. Isolates of Enterobacteriaceae could be cultivated on different media and were identified by MALDI-TOF MS and PCR. Escherichia coli isolates were genotyped by DNA-microarray-based assays. The antimicrobial susceptibility to 14 antibiotics was determined and resistance-associated genes were detected. The VITEK-2 system was applied for phenotypical confirmation of extended-spectrum β-lactamase-producing isolates. The determination of colistin resistance was carried out phenotypically using E-test and genotypically using PCR for detection of the mcr-1 gene.ResultsOut of 576 samples, 72 representatives of Enterobacteriaceae were isolated and identified as 63 E. coli (87.5%), 5 Enterobacter cloacae (6.9%), 2 Klebsiella pneumoniae (2.8%) and 2 Citrobacter spp. (2.8%). Seven out of 56 cultivated E. coli (12.5%) were confirmed as ESBL-producing E. coli and one isolate (1.8%) as ESBL/carbapenemase-producing E. coli. Five out of 63 E. coli isolates (7.9%) recovered from different poultry flocks were phenotypically resistant to colistin and harboured mcr-1 gene.ConclusionsThis is the first study reporting colistin resistance and emergence of multidrug resistance in Enterobacteriaceae isolated from healthy broilers in the Nile Delta region, Egypt. Colistin-resistant E. coli in poultry is of public health significance. The global rise of ESBL- and carbapenemase-producing Gram-negative bacteria demands intensified surveillance. ESBL-producing E. coli in poultry farms in Egypt are of major concern that emphasizes the possibility of spread of such strains to humans. The results also reinforce the need to develop strategies and to implement specific control procedures to reduce the use of antibiotics.

Highlights

  • Poultry remains one of the most important reservoir for zoonotic multidrug resistant pathogens

  • Five out of 63 E. coli isolates (7.9%) recovered from different poultry flocks were phenotypically resistant to colistin and harboured mcr-1 gene. This is the first study reporting colistin resistance and emergence of multidrug resistance in Enterobacteriaceae isolated from healthy broilers in the Nile Delta region, Egypt

  • Colistin-resistant E. coli in poultry is of public health significance

Read more

Summary

Introduction

Poultry remains one of the most important reservoir for zoonotic multidrug resistant pathogens. The global rise of antimicrobial resistance in Gram-negative bacteria is of reasonable concern and demands intensified surveillance. Poultry and their products are considered the main vehicle for pathogenic bacteria such as Salmonella (S.) serovars, Escherichia (E.) coli and Klebsiella (K.) spp. that cause foodborne infections in humans [1,2,3]. Extended-spectrum β-lactamases (ESBLs) are plasmidencoded enzymes found in Gram-negative bacteria especially in Enterobacteriaceae conferring resistance to first, second and third generation cephalosporins while they are inhibited by clavulanic acid [6,7,8,9,10]. ESBL-producing Enterobacteriaceae have emerged as pathogens in both poultry and humans [7, 11]. The coexistence of multiple ESBL and carbapenemase genes as well as other antibiotic resistance determinants on mobile elements is of a major concern that might lead to the emergence of organisms with resistance to all antibiotics [6, 20, 21]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call