Abstract

The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy cats were processed for cefotaxime-resistant (CTXR) E. coli recovery (in MacConkey agar supplemented with 2 µg/mL cefotaxime). The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method was used for E. coli identification and antimicrobial susceptibility was performed by a disk diffusion test. The presence of resistance/virulence genes was tested by PCR sequencing. The phylogenetic typing and multilocus sequence typing (MLST) were determined by specific PCR sequencing. CTXR E. coli isolates were detected in seven sick and six healthy cats (7.1% and 13.9%, respectively). Based on the synergy tests, 11 of 13 CTXR E. coli isolates (one/sample) were ESBL-producers (ESBL total rate: 7.8%) carrying the following ESBL genes: blaCTX-M-1 (n = 3), blaCTX-M-15 (n = 3), blaCTX-M-55 (n = 2), blaCTX-M-27 (n = 2) and blaCTX-M-9 (n = 1). Six different sequence types were identified among ESBL-producers (sequence type/associated ESBLs): ST847/CTX-M-9, CTX-M-27, CTX-M-1; ST10/CTX-M-15, CTX-M-27; ST6448/CTX-M-15, CTX-M-55; ST429/CTX-M-15; ST101/CTX-M-1 and ST40/CTX-M-1. Three of the CTXR isolates were CMY-2-producers (qAmpC rate: 2.1%); two of them were ESBL-positive and one ESBL-negative. These isolates were typed as ST429 and ST6448 and were obtained in healthy or sick cats. The phylogenetic groups A/B1/D/clade 1 were detected among ESBL- and qAmpC-producing isolates. Cats are carriers of qAmpC (CMY-2)- and ESBL-producing E. coli isolates (mostly of variants of CTX-M group 1) of diverse clonal lineages, which might represent a public health problem due to the proximity of cats with humans regarding a One Health perspective.

Highlights

  • The emergence and fast dissemination of antimicrobial-resistant bacteria (AMR) continue to be a public health concern in both medicine and agriculture [1]

  • Five different blaCTX-M variants were detected among our extended-spectrum beta-lactamase (ESBL)-producing E. coli: blaCTX-M-1 (3), blaCTXM-15 (3), blaCTX-M-55 (2), blaCTX-M-27 (2) and blaCTX-M-9 (1) (Table 1)

  • The present survey showed an increased risk of AMR in fecal E. coli strains from cats, which is consistent with the results of several previous studies in different animal species

Read more

Summary

Introduction

The emergence and fast dissemination of antimicrobial-resistant bacteria (AMR) continue to be a public health concern in both medicine and agriculture [1]. It was estimated that the global consumption of antimicrobial agents in animal food production will increase by 67% between 2010 and 2030 [2] This global rapid increase of AMR has been mostly attributed to the overuse and misuse of antibiotics in human and veterinary medicine [3,4]. Escherichia coli, a Gram-negative bacterium that normally habits in the gastrointestinal tract of healthy humans and warm-blooded animals, is an important opportunistic pathogen [6,7] This commensal microorganism is known to be an important indicator of the antibiotic resistance evolution as well as an eventual reservoir of virulence genes in different ecosystems [8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call