Abstract
The worldwide successful expansion of ESKAPE pathogens is largely due to their ability to rapidly acquire high antimicrobial resistance levels. The bacterial resistome includes (1) plasmid-encoded genes acquired as a result of horizontal gene transfer, and (2) chromosomal genes associated with the antimicrobial resistance development. This review represents the priority list of the ESKAPE group chromosomal genes, mutations in which are associated with antimicrobial resistance. The diversity of chromosomal genes carrying antimicrobial resistance (AMR) associated mutations confers the rapid pathogen adaptation to antimicrobials by generation of multilevel pathways to neutralize antibiotics. Analysis of the AMR mechanisms associated only with plasmid resistance genes is insufficient. A comprehensive description of AMR mechanisms should include also an analysis of chromosomal genes, mutations in which lead to increased levels of antimicrobial resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical Microbiology and Antimicrobial Chemotherapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.