Abstract

BackgroundThe emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation.ResultsIn sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the blaNDM-1 and blaVIM-2 genes, respectively and were able to transmit imipenem resistance through conjugation.ConclusionOur findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.

Highlights

  • The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; early detection of these isolates, their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies

  • Antimicrobial resistance and Extendedspectrum β-lactamases (ESBLs)-production A total of 412 E. coli strains were isolated from 430 children aged under 3 years old

  • The occurrence of antimicrobial resistance (AMR) can vary in different geographical regions; knowing regional AMR, especially in the commensal flora, provides important information for empiric antimicrobial therapy decision-making

Read more

Summary

Introduction

The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; early detection of these isolates, their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Since the introduction of antibiotics, antimicrobial resistance (AMR), especially amongst pathogenic bacteria has been emerging. AMR may be acquired through horizontal gene transfer between bacteria. In this case, commensal bacteria are of particular importance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.