Abstract

BackgroundThe human and animal intestinal tract harbors a complex community of microbes which enables bacteria to inherit antibiotic resistance genes. The aims of this study were to investigate clonality, antimicrobial resistance, prevalence and gene cassette arrays of class I and II integrons among commensal Escherichia coli from human and animals.MethodsA total of 200 E. coli isolates from human, chicken, cattle, and sheep were isolated followed by phenotypic antibiotic susceptibility testing and detection of class I and II integrons gene cassettes arrays. The clonal relationship of the isolates were analyzed by (GTG)5-PCR.ResultsOf 200 isolates, 136 isolates were multi drug resistance (MDR) including 47, 40, 31 and 18 isolates from chicken, human, cattle and sheep, respectively. Class I integron was detected in 50, 38, 6 and 16 %, while class II was detected in 26, 8, 0 and 4 % of chicken, human, cattle and sheep isolates, respectively. Variable regions were amplified and sequenced. Cassette arrays in class I integrons were: dfrA1, dfrA5, dfrA7, dfrA12, aadA1, dfrA17 aadA1, aadA22, aadB–aadA2 and dfrA12–orfF–aadA2, and for class II, dfrA1-sat-aadA1, and sat-sat1-aadA1 were detected. Six class I and three class II positive strains did not produce any amplicons for variable region. Integron-positive isolates showed higher rate of resistance to streptomycin and trimethoprim–sulphamethoxazole, especially in chicken isolates which were fed antibiotics. Low similarity and great genetic diversity of class I and II integrons carrying isolates indicated no clonal relation.ConclusionsIntegrons encoding for antibiotic resistance are significantly present among non-pathogenic commensal E. coli, especially from the hosts medicated by antibiotics. Uncontrolled use of antibiotics will increase the numbers of multiple drug resistant isolates and integrons prevalence.

Highlights

  • The human and animal intestinal tract harbors a complex community of microbes which enables bacteria to inherit antibiotic resistance genes

  • Carrying resistance plasmids and the ability of transferring resistance, E. coli is a potential reservoir for antimicrobial resistance genes which plays an important role in the ecology of antimicrobial resistance of bacterial populations [2]

  • Exposure to resistant bacteria via the food-chain has gained increased attention because the presence of resistant bacteria in food and water might have an impact on the development and dissemination of antibiotic resistance among human bacterial pathogens [3]

Read more

Summary

Introduction

The human and animal intestinal tract harbors a complex community of microbes which enables bacteria to inherit antibiotic resistance genes. The aims of this study were to investigate clonality, antimicrobial resistance, prevalence and gene cassette arrays of class I and II integrons among commensal Escherichia coli from human and animals. Enteric fecal flora from food producing animals such as chicken, cattle and sheep may transfer antimicrobial resistance to human pathogens [3]. Exposure to resistant bacteria via the food-chain has gained increased attention because the presence of resistant bacteria in food and water might have an impact on the development and dissemination of antibiotic resistance among human bacterial pathogens [3].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call