Abstract

Canine parvovirus type 2 (CPV-2) represents a major viral threat to dogs. Considering the potential effects of pets on antimicrobial resistance, information on the CPV and associated bacterial co-infections is limited. The aim of this study was to analyze the antimicrobial susceptibility and multidrug-resistance profiles of bacterial species from tissue samples of dogs with canine parvovirus infection. A set of PCR assays and sequence analyses was used for the detection and the molecular characterization of the CPV strains and other enteric viruses. Bacterial isolation, the determination of antimicrobial susceptibility via the disk diffusion method, and the determination of the minimum inhibitory concentration were performed. The detection of β-lactamase genes and toxin genes for specific bacteria was also carried out. CPV infection was confirmed in 23 dogs. Forty-three bacterial strains were isolated and all showed phenotypic resistance. Seventeen multidrug-resistant bacteria and bacteria with high resistance to third- and fourth-generation cephalosporins and metronidazole were detected. Almost 50% of the isolated Enterobacteriaceae were positive for at least one β-lactamase gene, with the majority carrying more genes as well. The evidence for multi-resistant bacteria with the potential for intra- or cross-species transmission should be further considered in a One Health approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call