Abstract

Polymethylmethacrylate is used for local delivery of antimicrobials in the treatment of musculoskeletal infections. A novel continuous flow chamber system was designed to measure in vitro antimicrobial release. Three-millimeter beads containing amikacin, gentamicin, tobramycin, or vancomycin [concentration of 7.5% (weight per weight)] were placed individually in a continuous flow chamber with a total volume of 1 mL Kreb's Ringer buffer flowing at 1 mL/hour. Effluent was sampled hourly for 24 hours and then every 2 hours up to 48 hours; antimicrobial concentrations were measured in triplicate by bioassay. The mean peak concentrations were 40.9, 30.1, 30.0, and 19.1 microg/mL; the mean areas under the concentration time curves (Time 0 to infinity) were 263, 327, 110, and 180 hours x microg/mL of antibiotic; and the mean percentages of initial amount of antimicrobial released were 11.7%, 14.5%, 6.6%, and 10.9% for tobramycin, gentamicin, amikacin, and vancomycin, respectively. The results for each polymethylmethacrylate-antimicrobial agent combination were reproducible. In contrast to other in vitro elution systems, this novel system operates under the premise that there is dynamic flow surrounding polymethylmethacrylate in vivo and permits rapid in vitro comparison of the relative release of antimicrobial agents from polymethylmethacrylate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.