Abstract

Biofilm is a structure in the shape of a surface adherent composed of a microbe’s community and plays a crucial role in stimulating the infection. Due to the Biofilm’s complex structure compared with the individual microbe, it occasionally develops recalcitrant to the host immune system, which may lead to antibiotic resistance. The National Institutes of Health has reported that more than 80% of bacterial infections are caused by biofilm formation. Removing biofilm-mediated infections is an immense challenge that should involve various strategies that may induce sensitive and effective antibiofilm therapy. In the last decade, nanoparticle NPs application has been employed as one of the strategies that have grown great stimulus to target antibiofilm treatment due to their unique properties. Nanobiotechnology holds promise for the future because it has various antimicrobial properties in biofilms and promising new drug delivery methods that stand out from conventional antibiotics. Studying the interaction between the Biofilm and the nanoparticles can deliver additional insights regarding the mechanism of biofilm regulation. This review article will define synthetic nanoparticle NPs, their medical applications, and their potential use against a broad range of microbial biofilms in the coming years. The motivation of the current review is to focus on NPs materials’ properties and applications and their use as antimicrobial agents to fight resistant infections, which can locally terminate bacteria without being toxic to the surrounding tissue and share its role in improving human health in the future. Keywords: Biofilms, antimicrobial, nanoparticles, bio-nanotechnology, drug resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.