Abstract

This study sought to evaluates the efficiency of anti-microbial activity of acrylic resins doped with different concentrations of Undaria pinnatifida after activation with light-emitting diode (LED) at producing photodynamic damage to multispecies biofilm-producing microbiome. In this study, bioinformatics tools and computer simulation molecular modeling were used to evaluate the capacity of ferredoxin (FDX), an electron acceptor in metabolic pathways of U. pinnatifida, which can discharge electrons produced from photo-excited chlorophyll-a (Chl-a) by LED irradiation. Acrylic resin discs containing different concentration of U. pinnatifida (0, 0.5, 1, and 2%) were fabricated and were subjected to LED irradiation immediately before each experiment. After continuously rinsed (up to 30 days), the antimicrobial activity of acrylic resins doped with U. pinnatifida following photo-activation was determined by disc agar diffusion, biofilm formation inhibition, and eluted component assays versus bacterial species linked to caries that constitute a mixed biofilm including Streptococcus mutans, S. sanguinis, and Lactobacillus acidophilus, as well as Candida albicans as main etiology of candidal stomatitis. Modeling and a virtual screening analysis of FDX indicated that it is a stable protein with an iron-sulfur center that can discharge electrons produced from photo-excited Chl-a and transfers them to FDX-NADP+ reductase for NADP+ reduction in photosystem I, which is essential in the Calvin cycle for carbon assimilation. FDX acts as an electron transfer agent in the redox reactions. The results showed that growth inhibition zones were not seen around acrylic resin discs in any group. In biofilm test, the colony counts of all test microorganisms significantly decreased (36%-87%) by an increase in the percentage of U. pinnatifida in acrylic resins after photo-activation (P < 0.05). Acrylic resins doped with 2% wt. U. pinnatifida following photo-activation using LED was inhibited biofilm formation by the test microorganisms, up to 30 days of rinsing. Based on the results presented here, an acrylic resin containing U. pinnatifida, even at the lowest concentration, following photo-activation using LED have antimicrobial properties against planktonic and biofilm forms of the cariogenic microorganisms as well as C. albicans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call