Abstract

BackgroundSedum praealtum has been used for a long time in traditional medicine as an analgesic and anti-inflammatory agent. Its beneficial effects have been known since ancient times, when Latinos used it to treat sore and swollen eyes. This research evaluated the antimicrobial potential, the cytotoxic and genotoxic effects, and some chromatographic profiles of the hydroethanolic extract of leaves, stems and roots of S. praealtum.MethodsThe antimicrobial activities were carried out by broth microdilution and agar diffusion. In vitro cytotoxicity was evaluated by cell cultures of Aedes albopictus and the selectivity index (SI) was estimated: SI=CI50/MIC. Genotoxic and systemic toxic effects of S. praealtum leaves were analyzed by micronucleus assay in mice bone marrow. Chromatographic profiles and mass spectra were investigated by GC-MS.ResultsGram-positive (B. subtilis, B. cereus, M. luteus, E. faecalis and S. aureus) and gram-negative (E. coli, E. aerogenes, S. marcescens, P. aeruginosa, P. mirabilis and S. typhimurium) bacteria exhibited MICs ranging from 12.5–50 and 0–50 mg/ml, respectively. Sedum praealtum showed no efficacy against M. tuberculosis and M. bovis. Cytotoxicity (CI50) of S. praealtum was 4.22 and 5.96 mg/ml for leaves and stems, respectively, while its roots showed no cytotoxicity. Micronucleated polychromatic erythrocytes (MNPCEs) analyzes showed no differences between treatment doses (0.5–2 g/kg) and negative control (NaCl), but the PCE/NCE ratio (polychromatic erythrocyte/normochromatic erythrocyte) showed significant differences. Phytochemical screening identified thirteen compounds in the leaves, stems and roots of S. praealtum potentially associated with their biological activities.ConclusionsThis research comprises a first scientific study on genotoxicity, cytotoxicity and antimicrobial effects of S. praealtum (Balsam), and it provides an initial theoretical foundation for its comprehensive use. Results showed antibacterial action of S. praealtum against gram-positive bacteria and some gram-negative species (depending on the plant anatomical part), but ineffective antimycobacterial action. However, S. praealtum leaves and stems display potential cytotoxicity, contributing to the SI < 1 values. In addition, S. praealtum leaves exhibit no clastogenic and/or aneugenic effects, but it has systemic toxicity dose-independent.

Highlights

  • Sedum praealtum has been used for a long time in traditional medicine as an analgesic and antiinflammatory agent

  • Chemical studies of Sedum species have led to the isolation of several classes of substances, such as alkaloids, tannins, flavonoids and cyanogenic compounds [1,2,3,4]

  • Prior to antimicrobial susceptibility testing, cytotoxicity and genotoxicity assays, aliquots (500 ml) of these extracts were submitted to solvent removal proceedings by rotary evaporation (40 rpm) (Rotary Evaporator RV 10 Control V, IKA® Works, Inc., USA) coupled in bath heating systems (40 °C) (Heating Baths HB10, IKA® Works, Inc., USA), vacuum pump (175 mbar) (Chemistry diaphragm pump MD 1C, VACUUBRAND GMBH + CO KG, Wertheim, Germany), recirculator of distilled water (10 °C) (Banho Ultratermostatizado Microprocessado Digital, SPLABOR, cod. # SP-152/10, Presidente Prudente, SP, Brazil) and evaporation bottle (RV 10.85 Evaporation Flask, NS 29/32-2 L, IKA® Works, Inc., USA)

Read more

Summary

Introduction

Sedum praealtum has been used for a long time in traditional medicine as an analgesic and antiinflammatory agent. The genus Sedum (family Crassulaceae) features more than 350 species, which encompasses a large number of pharmacologically active species. DC.) [5,6,7] is a little bush with yellow flowers, found from Mexico to Guatemala, popularly known as Balsam [6]. Balm occupies the following taxonomic position: Division: Magnoliophyta; Class: Magnoliopsida; Subclass: Rosidae; Order: Rosales; Family: Crassulaceae; Genus: Sedum; Species: Sedum dendroideum subsp. The spread of Balsam (Sedum praealtum) is mainly due to the cutting of branches, which must be planted in 0.5 × 0.5 m pits when plants have five to eight definite leaves [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call