Abstract
To investigate the antimicrobial activity of peptides derived from C-type Lectin Domain Family 3 Member A (CLEC3A), shed light on the mechanism of antimicrobial activity and assess their potential application in prevention and treatment of septic arthritis. We performed immunoblot to detect CLEC3A peptides in human cartilage extracts. To investigate their antimicrobial activity, we designed peptides and recombinantly expressed CLEC3A domains and used them to perform viable count assays using E.coli, P.aeruginosa and S.aureus. We investigated the mechanism of their antimicrobial activity by fluorescence and scanning electron microscopy, performed ELISA-style immunoassays and transmission electron microscopy to test for lipopolysaccharide binding and surface plasmon resonance to test for lipoteichoic acid (LTA) binding. We coated CLEC3A peptides on titanium, a commonly used prosthetic material, and performed fluorescence microscopy to quantify bacterial adhesion. Moreover, we assessed the peptides' cytotoxicity against primary human chondrocytes using MTT cell viability assays. CLEC3A fragments were detected in human cartilage extracts. Moreover, bacterial supernatants lead to fragmentation of recombinant and cartilage-derived CLEC3A. CLEC3A-derived peptides killed E.coli, P.aeruginosa and S.aureus, permeabilized bacterial membranes and bound lipopolysaccharide and LTA. Coating CLEC3A antimicrobial peptides (AMPs) on titanium lead to significantly reduced bacterial adhesion to the material. In addition, microbicidal concentrations of CLEC3A peptides invitro displayed no direct cytotoxicity against primary human chondrocytes. We identify cartilage-specific AMPs originating from CLEC3A, resolve the mechanism of their antimicrobial activity and point to a novel approach in the prevention and treatment of septic arthritis using potent, non-toxic, AMPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.