Abstract

AbstractWe recently reported the discovery of antimicrobial peptide dendrimers (AMPDs) acting by a membrane‐disruptive mechanism against multidrug resistant pathogenic bacteria. Here, we combined amino acid sequence elements from different AMPDs with different activity profiles to form AMPD chimeras. By joining the outer branches of TNS18, an AMPD active against Pseudomonas aeruginosa, Acinetobacter baumannii and methicillin resistant Staphylococcus aureus, with the core of T7, another AMPD active against P. aeruginosa, A. baumannii and Klebsiella pneumoniae, we obtained AMPD chimera DC5 displaying all previously observed activities while retaining a similar mechanism of action. These experiments show that chimera design represents a useful strategy to improve the properties of AMPDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.