Abstract
Candida albicans, a common commensal and opportunistic fungal pathogen in humans, can occasionally progress to disseminated candidiasis which is a serious condition with a high morbidity and fatality rate. The emergence of drug-resistant fungal strains compels us to look for an efficient treatment solution. Our earlier studies have demonstrated that the unique antimicrobial peptide AMP-17 from Musca domestica has a strong antifungal impact on C. albicans in vitro. Here, we verified the therapeutic effects of AMP-17 on systemic candidiasis in vivo and the peptide interacts with fluconazole, a common antifungal medication, to treat systemic candidiasis. In the disseminated candidiasis model of Galleria mellonella and mice challenged with C. albicans, AMP-17 increased the survival rates of infected larvae and mice to 66.7 and 75%, respectively. Furthermore, the peptide lowered the load of C. albicans in the infected larvae and the kidneys of the mice by nearly 90%. Additional histological examination and measurements of plasma cytokines showed that the injection of AMP-17 markedly reduced the inflammatory response and balanced cytokine expression. Furthermore, checkerboard micro dilution experiments demonstrated that AMP-17 and fluconazole worked in synergy to inhibit C. albicans in the biofilm mode. According to morphological studies, AMP-17 and fluconazole together decreased the production of hyphae throughout the C. albicans biofilm formation process, loosening the mature biofilms' structure and lowering the amount of carbohydrates in the extracellular matrix (ECM) of the biofilms. Taken together, these results showed that AMP-17 would be a viable treatment for systemic candidiasis and might be a different approach to combating Candida biofilm, either by itself or in conjunction with fluconazole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.