Abstract

Microbial adhesion to surfaces and the consequent biofilm formation under various environmental conditions is a common ecological phenomenon. Although biofilms play crucial beneficial roles in many processes, they can also cause serious problems for food, biomedical, environmental, and industrial sectors, leading to higher costs of production and equipment maintenance, and negative public health and environmental impacts. Biofilms are difficult to eradicate due to their resistance to conventional antimicrobial applications. Consequently, attention has been devoted to new emerging nanomaterials for their remarkable antimicrobial function. Understanding the inactivation mechanisms is the key to increase the efficiency of nanoparticles (NPs) and enhance the feasibility of their application against various microorganisms under different environments. In this paper, we review the activities of NPs as antimicrobial agents. We also discuss the mechanisms and factors contributing to antimicrobial properties of NPs. In addition, we describe some of the approaches employing NPs as effective antimicrobial agent, and associated challenges and problems in developing NPs as effective antibiofilm agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call