Abstract
Development of antimicrobial materials that regenerate antimicrobial activity represents a novel technology in preventing microbial cross-contamination. We report a method for the application of regenerably antimicrobial N-halamines onto the surface of polyethylene (PE) materials through layer-by-layer (LbL) assembly of polyethyleneimine and poly(acrylic acid). A total of 5, 10, 15, and 20 bilayers were applied. Modified PE had from 49.3 to 293.5 nmol cm(-2) antimicrobial N-halamines from 5 to 20 bilayers after 10 min of chlorination. Each variant of N-halamine modified PE was able to reduce by >5 logarithmic cycles Listeria monocytogenes. The stability of N-halamine modified PE was characterized after extended exposure to chlorine, acidic solutions, and an alkaline cleaner. After an initial conditioning period, materials generated more than double the quantity of N-halamines present on as prepared materials, retaining regenerability for up to 100 chlorination cycles. After the equivalent of 300 washing cycles by buffers (pH values 3, 5, and 7) or a commercial alkaline detergent, there was no change in the number of antimicrobial N-halamines on the modified materials. These results indicate that the reported LbL deposition technique results in antimicrobial N-halamine materials capable of long-term reuse and exposure to harsh chemicals as expected in a food-processing environment. Such robust, regenerably antimicrobial materials could be an effective technology in the food industry to prevent cross-contamination of pathogenic and spoilage microorganisms. The food contact surface of polyethylene was modified by layer-by-layer deposition of 2 polymers, resulting in a rechargeably antimicrobial surface. Repeated exposure to chlorine regenerated its antimicrobial activity, resulting in greater than 99.999% reduction in Listeria monocytogenes. Materials were stable against repeated washing and exposure to acidic environments. These food contact materials could support current cleaning and sanitization protocols in improving food safety in the processing environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.