Abstract

The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.

Highlights

  • In the last decades, the search for new antimicrobial substances against microbial contamination has been the focus of many research fields, in public and private research centers, in order to reduce nosocomial infections and foodborne diseases

  • The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens

  • In food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat

Read more

Summary

Introduction

The search for new antimicrobial substances against microbial contamination has been the focus of many research fields, in public and private research centers, in order to reduce nosocomial infections and foodborne diseases. The bacteriostatic and bactericidal effects exhibited by the compounds during in vitro experiments depend on several factors, including bacterial density, test duration, growth conditions, and the reduction in bacteria concentration. For these reasons, in many studies the compounds are better described as substances with excellent antibacterial properties, since they can exhibit both effects [1]. The antibacterial effectiveness of most compounds differs depending on the type of bacteria exposed to these compounds. Gram-positive and Gram-negative bacteria, for example, are categories widely studied due to their different cellular structure which might affect the antimicrobial effectiveness of a given compound. Gram-positive bacteria have a thicker peptidoglycan layer, whereas Gram-negative bacteria contain a thin peptidoglycan layer and an outer membrane [2]

Objectives
Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call