Abstract

Phytophthora capsici, a refractory and model oomycete plant pathogen, especially threatens multiple vegetable crops. A limited number of chemical pesticides play a vital role in controlling oomycete plant diseases. However, this approach often leads to excessive use of chemical agent, exacerbates environmental issues and more and more drug-resistant strains of oomycete. Therefore, it is imperative to devise innovative solutions that can effectively address the infection of oomycete while maintaining high levels of environmental sustainability and low toxicity. In this study, g-C3 N4 @ZnO heterostructure was synthesized and characterized. The g-C3 N4 @ZnO showed higher toxicity on Phytophthora capsici than graphitic carbon nitride (g-C3 N4 ) nanosheets and zinc oxide (ZnO) nanoparticles in vitro and in vivo. Except the hyphal growth of Phytophthora capsici, their germination rate of spores, sporangium formation and number of spores were all suppressed by g-C3 N4 @ZnO heterostructure. Furthermore, we found that this g-C3 N4 @ZnO heterostructure has higher photocatalytic activity under visible light, which potentially enhanced the reactive oxygen species (ROS) mediated stress on Phytophthora capsici. Ultrastructural morphology, global changes of gene expression and weighted gene co-expression network analysis all supported that the anti-oomycete activity of g-C3 N4 @ZnO was manifested in the destruction of membrane system and inhibition of multiple metabolisms of Phytophthora capsici under visible irradiation, which also could be attributed to the ROS and zinc ion (Zn2+ ) mediated stress. This works offers a novel oomycete disease management strategy by using g-C3 N4 @ZnO, which were attributed to the ROS stress, destruction of membrane system and inhibition of multiple metabolisms. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call