Abstract

In order to synthesize the antimicrobial cotton fabrics, two antimicrobial agents, 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (TX-DF) and 3-(acrylamidopropyl) trimethylammonium chloride (APTAC), were grafted onto cotton fabrics by atmospheric pressure plasma treatment. Orthogonal array testing strategy (OATS) was applied to investigate the optimum treatment conditions of the atmospheric pressure plasma, including sputter-gas species, gas pressure, treatment power and time. The obtained cotton fabrics were characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS). And the results revealed the successful grafting of two antimicrobial agents on cotton fabrics. The antimicrobial efficiency of the plasma treated cotton fabric were studied and found that the TX-DF-treated cotton fabric inactivated 99.85% S. aureus and 99.07% E. coli O157:H7 in 30 min contact time. The cotton sample grafted with APTAC inactivated 74.6% S. aureus and 92.3% E. coli O157:H7 in 30 min. The hand feeling of the plasma treated antimicrobial cotton fabrics ware measured by PhabrOmeter system, and the result showed that the plasma treatment has little effect on hand value. Thus, the antimicrobial property of cotton fabric finished with TX-DF by the argon/oxygen-plasma techniques achieved sound effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call