Abstract

Pathogenic bacteria in drinking water threaten human health and life. In the work, antimicrobial films composed of myricetin@tannic acid (My@TA) nanoparticles (NPs) and chitosan derivation microgels were developed to kill pathogenic bacteria in drinking water. Hydrophobic My was first made into water soluble My@TA NPs using a solvent exchange method with TA as stabilizer. Polymeric microgels of carboxymethyl chitosan (CMCS)/hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were then fabricated with a blending method. CMCS&HACC/My@TA multilayer films were further deposited on the internal surface of PET bottles by using a layer-by-layer (LbL) assembly technique. The PET bottles coated with the films could effectively kill pathogenic bacteria in water such as S. aureus, E. coli, Staphylococcus epidermidis, Pseudomonas fluorescens, Listeria monocytogenes and methicillin resistant Staphylococcus aureus (MRSA). In addition, CMCS&HACC/My@TA films displayed good antioxidant activity, water resistance, and in vivo biocompatibility with heart, liver, spleen, lung and kidney organs. We believe that the container coated with CMCS&HACC/My@TA films can be applied to prevent microbial contamination of drinking water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.