Abstract

New natural reducing agents with a lower negative impact on the environment and with a high antimicrobial potential are required for the process of obtaining silver nanoparticles through the chemical reduction method. The use of plant extracts can be a fast track in the formation of nanoparticles. In this case, organic compounds such as terpenes, flavonoids, enzymes, proteins, and cofactors present in plants act as reducing agents for nanomaterials. This research evaluated the antimicrobial property of silver nanoparticles from extracts of Crescentia cujete L. The presence of quercetin (flavonoid) was determined by high-performance liquid chromatography (HPLC); the production of silver nanoparticles (AgNPs) was established by green synthesis; the size and morphology of the nanomaterials were evaluated by scanning electron microscope (SEM). The antimicrobial capacity was studied by two analysis methods: modified culture medium and surface seeding. The presence of quercetin (26.55 mg L-1) in the crude extract of Crescentia cujete L., identified by HPLC, was evidenced. Nanoparticle formation was spherical, with an average size of 250 ± 3 and 460 ± 6 nm. Microbiological cultures with treatment showed 94% microbial inhibition. It was concluded that the Crescentia cujete L., leaves shoed an acceptable concentration of quercetin to be used as a useful adjuvant to enhance the reduction of NPs synthesis. The nanoparticles produced by green synthesis proved to have a positive effect to combat pathogenic microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call