Abstract

Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances, serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants, Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical tests, FTIR, and GC-MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A. cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results, it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly targeting its virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call