Abstract

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.

Highlights

  • Foodborne pathogenic bacteria can seriously influence the safety and quality of meats

  • This study has strictly focused on the comparative antibacterial analysis of the NPs on the afore-mentioned foodborne pathogenic bacteria

  • Our current results indicate that the defence mechanism of C. jejuni is unable to cope with the Reactive oxygen species (ROS) generated by PF-co-doped TiO2 NPs

Read more

Summary

Introduction

Foodborne pathogenic bacteria can seriously influence the safety and quality of meats. They can cause diseases and death, and represent an economic burden [1]. Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli (EHEC), Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus are among the most impactful foodborne bacterial pathogens. C. jejuni is one of the most common causative agents of bacterial foodborne illness, mostly associated with the consumption of undercooked poultry meat and milk [2]. Raw meat and meat products are ideal food matrices favouring their growth Their presence in food can cause food poisoning, septicaemia, toxic shock syndrome and fatal endocarditis [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call