Abstract

To investigate the effect of nanosilver particles in solution stabilized in a matrix of sodium alginate on the growth and development of pathogenic bacteria such as Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Proteus vulgaris, Enterobacter cloacae, the antibiotic-resistant strain of Pseudomonas aeruginosa, the yeast-like fungus Candida albicans, and the luminescent bacteria Photobacterium leiognathi Sh1. Isolates of pathogenic bacteria obtained from bronchoalveolar and peritoneal lavage samples from Wistar rats with experimental pneumonia and peritonitis were tested for their susceptibility to silver nanoparticles in solution with an alginate stabilizer. The antifungal activity of silver nanoparticles in sodium alginate was studied for C. albicans (strain CCM885) using the Sabouraud agar method. The biocidal impact of silver nanoparticles in solution with a sodium alginate matrix on the luminescent bacteria P. leiognathi Sh1 was investigated using a BLM 8801 luminometer. It was observed that a 0.02-0.05% nanosilver solution with an alginate stabilizer limits the growth and development of pathogenic bacteria within the first 24 hours of exposure. If the concentration of nanosilver solution is 0.0005-0.05%, it inhibits the viability of the fungus C. albicans. A nanosilver solution at a concentration of 0.05-0.2 μg/mL represses bioluminescence in the bacteria P. leiognathi Sh1. From these results, it appears that the biocidal effect of nanosilver is related either to the presence of ions that are formed during dissolution, or to the availability of nanoparticles that interrupt the membrane permeability of bacterial cells. Silver nanoparticles stabilized in a solution of sodium alginate possess significant in vitro antimicrobial activity, which is manifested by inhibition of the bioluminescence of P. leiognathi Sh1, and inhibition of the growth and development of the pathogenic bacteria S. aureus, E. faecalis, E. coli, P. vulgaris, E. cloacae, the antibiotic-resistant strain of P. aeruginosa, and the fungus C. albicans.

Highlights

  • Investigation of the biological properties of the metal nanoparticles associated with significant recent progress in nanomedicine and nanopharmacology is one of the priorities of current research [1]

  • The aim of this study was to investigate the effect of a nanosilver solution in a matrix of sodium alginate on the growth and development of pathogenic bacteria (S. aureus, E. faecalis, E. coli, P. vulgaris, E. cloacae, P. aeruginosa), the yeast-like fungus C. albicans, and on the reduction of bioluminescence in the luminescent bacteria P. leiognathi Sh1, so as to determine the possibility of using luminescent bacteria to assess the toxicity of nanoparticles

  • As these studies have shown, experimental isolates of the bacteria S. aureus, E. faecalis, E. coli, P. vulgaris, and E. cloacae, as well as the antibiotic-resistant strain of P. aeruginosa (Pseudomonas aeruginosa), were sensitive to a solution of silver nanoparticles suspended in sodium alginate, and the sensitivity of microorganisms depended on the concentration of the solution

Read more

Summary

Introduction

Investigation of the biological properties of the metal nanoparticles associated with significant recent progress in nanomedicine and nanopharmacology is one of the priorities of current research [1]. Nanomedicine studies the possibility of using nanotechnologies in the practice of medicine to, diagnose, treat, and prevent various diseases [2]. Investigation of the mechanisms of action of drugs based on silver nanoparticles is of particular interest [3]. It should be noted that silver-based drugs have been used as antiseptic and anti-inflammatory agents for quite a long time [4]. The advent of nanosized silver led to the development of drugs with stronger bactericidal, antiviral, antifungal, and antiseptic effects, with the ability to act as high-efficiency disinfectants for a broad range of pathogenic microorganisms [5]. The areas of contact between nanosilver and bacteria/viruses are greatly

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.