Abstract

Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environmentally friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H2O2-Ag+) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900, and Salmonella Typhimurium SL 1344. The MICs and MBCs against S. aureus were found to be 0.014% H2O2-3.125 mg/L Ag+, and for both E. coli O157:H7 and Salmonella Typhimurium they were 0.028% H2O2-6.25 mg/L Ag+. Results of the time-kill trial suggest that HSC could inhibit the growth of the tested bacteria, because 99.9% of viable cells were killed following treatment at 1 MIC for 3 h. The mechanism of antibacterial action of HSC was found to include the disruption of the bacterial cell membrane, followed by reduction of intracellular ATP concentration and inhibition of the activity of antioxidases, superoxide dismutase, and catalase. The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.