Abstract

We studied the resistance mechanism and antimicrobial effects of β-lactams on imipenem-resistant Pseudomonas aeruginosa isolates that were susceptible to ceftazidime as detected by time-kill curve methods. Among 215 P. aeruginosa isolates from hospitalized patients in eight hospitals in the Republic of Korea, 18 isolates (23.4% of 77 imipenem-resistant isolates) were imipenem resistant and ceftazidime susceptible. Multilocus sequence typing revealed diverse genotypes, which indicated independent emergence. These 18 isolates were negative for carbapenemase genes. All 18 imipenem-resistant ceftazidime-susceptible isolates showed decreased mRNA expression of oprD, and overexpression of mexB was observed in 13 isolates. In contrast, overexpression of ampC, mexD, mexF, or mexY was rarely found. Time-kill curve methods were applied to three selected imipenem-resistant ceftazidime-susceptible isolates at a standard inoculum (5 × 105 CFU/ml) or at a high inoculum (5 × 107 CFU/ml) to evaluate the antimicrobial effects of β-lactams. Inoculum effects were detected for all three β-lactam antibiotics, ceftazidime, cefepime, and piperacillin-tazobactam, against all three isolates. The antibiotics had significant killing effects in the standard inoculum, but no effects in the high inoculum were observed. Our results suggest that β-lactam antibiotics should be used with caution in patients with imipenem-resistant ceftazidime-susceptible P. aeruginosa infection, especially in high-inoculum infections such as endocarditis and osteomyelitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call