Abstract

We compared antimicrobial resistance phenotypes and pulsed-field gel electrophoresis (PFGE) subtypes of 1,028 human and 716 animal Salmonella enterica serotype Typhimurium isolates from Minnesota from 1997 to 2003. Overall, 29% of human isolates were multidrug resistant. Predominant phenotypes included resistance to ampicillin, chloramphenicol or kanamycin, streptomycin, sulfisoxazole, and tetracycline (ACSSuT or AKSSuT). Most human multidrug-resistant isolates belonged to PFGE clonal group A, characterized by ACSSuT resistance (64%), or clonal group B, characterized by AKSSuT resistance (19%). Most animal isolates were from cattle (n = 358) or swine (n = 251). Eighty-one percent were multidrug resistant; of these, 54% were at least resistance phenotype ACSSuT, and 43% were at least AKSSuT. More than 80% of multidrug-resistant isolates had a clonal group A or B subtype. Resistance to ceftriaxone and nalidixic acid increased, primarily among clonal group A/ACSSuT isolates. Clonal group B/AKSSuT isolates decreased over time. These data support the hypothesis that food animals are the primary reservoir of multidrug-resistant S. Typhimurium.

Highlights

  • We compared antimicrobial resistance phenotypes and pulsed-field gel electrophoresis (PFGE) subtypes of 1,028 human and 716 animal Salmonella enterica serotype Typhimurium isolates from Minnesota from 1997 to 2003

  • Typhimurium definitive phage type 104 (DT104) emerged in the United States; most isolates were resistant to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline [3]

  • Typhimurium isolates in the United States are limited [18], and an advisory panel has called for linking surveillance for bacterial resistance in animals and humans to further evaluate the human health effects of antimicrobial drug use in agriculture [19]

Read more

Summary

Introduction

We compared antimicrobial resistance phenotypes and pulsed-field gel electrophoresis (PFGE) subtypes of 1,028 human and 716 animal Salmonella enterica serotype Typhimurium isolates from Minnesota from 1997 to 2003. Clonal group B/AKSSuT isolates decreased over time These data support the hypothesis that food animals are the primary reservoir of multidrug-resistant S. Typhimurium definitive phage type 104 (DT104) emerged in the United States; most isolates were resistant to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline (resistance phenotype [R-type] ACSSuT) [3]. Typhimurium isolates in the United States are limited [18], and an advisory panel has called for linking surveillance for bacterial resistance in animals and humans to further evaluate the human health effects of antimicrobial drug use in agriculture [19]. Typhimurium isolates received through statewide, population-based, active laboratory surveillance in Minnesota and to compare the human isolates to isolates from clinically ill animals in Minnesota identified by the Minnesota Veterinary Diagnostic Laboratory (MVDL)

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.