Abstract

Mammalian cationic antimicrobial peptides have received increased attention over the last decade, due to their prokaryotic selectivity and decreased risk of microbial resistance. In addition, antimicrobial peptides display differential biological effects on mammalian immune cell function, such as migration, adhesion, and modulation of respiratory burst, which make them even more attractive as therapeutic agents. Synthetic combinatorial libraries provide a time-efficient and cost-effective source for these diverse molecules. The novel synthetic antimicrobial peptide, KSLW (KKVVFWVKFK-NH2), has been shown to display a broad spectrum of antimicrobial activity against Gram (+) and Gram (−) bacteria, fungi and viruses. In this study, we evaluated the alternative biological activity of the decapeptide on neutrophil migration and function. KSLW was demonstrated to be chemotactic for neutrophils in micromolar amounts, and neutrophil treatment with KSLW, after 1min, resulted in significant increases in F-actin polymerization. KSLW was shown to inhibit oxygen radical production in PMA- and LPS-stimulated neutrophils. Future studies, to determine if KSLW regulates neutrophil phagocytosis, adhesion, and apoptosis, or examining the effect of KSLW on other mammalian cell types, such as cell populations of healing-impaired wounds, would provide significant insight for the potential therapeutic strategies offered by antimicrobial peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.