Abstract

Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA)6-(PLL-PLGA-PLL-CMBCD)n, with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call