Abstract

A novel photopolymerizable (meth)acrylate oligomer syrup modified with ferulic acid (FA) was verified as an antimicrobial coating binder against a biofilm of Staphylococcus epidermidis. A solution-free UV-LED-initiated photopolymerization process of aliphatic (meth)acrylates and styrene was performed to prepare the oligomer syrup. The influence of ferulic acid on the UV crosslinking process of the varnish coatings (kinetic studies using photo-DSC) as well as their chemical structure (FTIR) and mechanical (adhesion, hardness), optical (gloss, DOI parameter), and antibacterial properties against S. epidermidis were investigated. The photo-DSC results revealed that FA has a positive effect on reducing the early occurrence of slowing processes and has a favorable effect on the monomer conversion increment. It turned out, unexpectedly, that the more FA in the coating, the greater its adhesion to a glass substrate and hardness. The coating containing 0.9 wt. part of FA exhibited excellent antimicrobial properties against S. epidermidis, i.e., the bacterial number after 24 h was only 1.98 log CFU/mL. All the coatings showed relatively high hardness, gloss (>80 G.U.), and DOI parameter values (30-50 a.u.).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.