Abstract

BackgroundThe primary goal of this study was to demonstrate that endotracheal tubes coated with antimicrobial lipids plus mucolytic or antimicrobial lipids with antibiotics plus mucolytic would significantly reduce pneumonia in the lungs of pigs after 72 hours of continuous mechanical ventilation compared to uncoated controls. Materials and MethodsEighteen female pigs were mechanically ventilated for up to 72 hours through uncoated endotracheal tubes, endotracheal tubes coated with the antimicrobial lipid, octadecylamine, and the mucolytic, N-acetylcysteine, or tubes coated with octadecylamine, N-acetylcysteine, doxycycline, and levofloxacin (6 pigs per group). No exogenous bacteria were inoculated into the pigs, pneumonia resulted from the pigs’ endogenous oral flora. Vital signs were recorded every 15 minutes and arterial blood gas measurements were obtained for the duration of the experiment. Pigs were sacrificed either after completion of 72 hours of mechanical ventilation or just prior to hypoxic arrest. Lungs, trachea, and endotracheal tubes were harvested for analysis to include bacterial counts of lung, trachea, and endotracheal tubes, lung wet and dry weights, and lung tissue for histology. ResultsPigs ventilated with coated endotracheal tubes were less hypoxic, had less bacterial colonization of the lungs, and survived significantly longer than pigs ventilated with uncoated tubes. Octadecylamine-N-acetylcysteine-doxycycline-levofloxacin coated endotracheal tubes had less bacterial colonization than uncoated or octadecylamine-N-acetylcysteine coated tubes. ConclusionEndotracheal tubes coated with antimicrobial lipids plus mucolytic and antimicrobial lipids with antibiotics plus mucolytic reduced bacterial colonization of pig lungs after prolonged mechanical ventilation and may be an effective strategy to reduce ventilator-associated pneumonia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.