Abstract

BackgroundIncreasing multidrug resistance in gram-negative bacilli (GNB) infections poses a serious threat to public health. Few studies have analyzed co-resistance rates, defined as an antimicrobial susceptibility profile in a subset already resistant to one specific antibiotic. The epidemiologic and clinical utility of determining co-resistance rates are analyzed and discussed.MethodsA 10-year retrospective study from 2002–2011 of bloodstream infections with GNB were analyzed from three hospitals in Greater Vancouver, BC, Canada. Descriptive statistics were calculated for antimicrobial resistance and co-resistance. Statistical analysis further described temporal trends of antimicrobial resistance, correlations of resistance between combinations of antimicrobials, and temporal trends in co-resistance patterns.ResultsThe total number of unique blood stream isolates of GNB was 3280. Increasing resistance to individual antimicrobials was observed for E. coli, K. pneumoniae, K. oxytoca, E. cloacae, and P. aeruginosa. Ciprofloxacin resistance in E. coli peaked in 2006 at 40% and subsequently stabilized at 29% in 2011, corresponding to decreasing ciprofloxacin usage after 2007, as assessed by defined daily dose utilization data. High co-resistance rates were observed for ceftriaxone-resistant E. coli with ciprofloxacin (73%), ceftriaxone-resistant K. pneumoniae with trimethoprim-sulfamethoxazole (83%), ciprofloxacin-resistant E. cloacae with ticarcillin-clavulanate (91%), and piperacillin-tazobactam-resistant P. aeruginosa with ceftazidime (83%).ConclusionsIncreasing antimicrobial resistance was demonstrated over the study period, which may partially be associated with antimicrobial consumption. The study of co-resistance rates in multidrug resistant GNB provides insight into the epidemiology of resistance acquisition, and may be used as a clinical tool to aid prescribing empiric antimicrobial therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2334-14-393) contains supplementary material, which is available to authorized users.

Highlights

  • Increasing multidrug resistance in gram-negative bacilli (GNB) infections poses a serious threat to public health

  • We conducted a 10-year retrospective study from Jan 2002 to Dec 2011 to quantify the trends of resistance and co-resistance patterns in GNB isolated from bloodstream infections at Vancouver Coastal Health (VCH), which includes Vancouver General Hospital (VGH) (a 950-bed tertiary care teaching hospital with 21,000 admissions per year), Richmond Hospital (a 175-bed community hospital), and Lion's Gate Hospital (a 268-bed community hospital)

  • We reviewed consumption data of antibiotics at VGH based on inpatient utilization data (Figure 3), and determined that the (DDD) of ciprofloxacin was stable at 23,000-24,000 from 2002–2004, decreasing to 17,000 in 2005, increasing back to 23,800 in 2007, and has since decreased to 10,100 in 2011

Read more

Summary

Introduction

Increasing multidrug resistance in gram-negative bacilli (GNB) infections poses a serious threat to public health. Co-resistance is defined in this study as the antimicrobial susceptibility profile in a subset of isolates already resistant to a specific antibiotic, and provides a different means for monitoring multidrug resistance and displaying observed trends, such as increasing multidrug resistance in P. aeruginosa that are resistant to ciprofloxacin [10,11,12]. The study of co-resistance can be quite broad and not limited to isolates that are known to harbour multidrug resistance, such as those with ESBLs. From a clinical perspective, co-resistance should be taken into consideration when prescribing empiric therapy for patients being treated for specific GNB where local antimicrobial resistance rates are significant, and in patients who have been exposed to prior courses of antimicrobial agents

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.