Abstract
Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, we showed that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca 2+ mobilization, microtubule polymerization, and degranulation. In this study, we extend the findings to human mast cells (LAD2) and present data indicating that CPC's mechanism of action centers on its positively-charged quaternary nitrogen in its pyridinium headgroup. CPC's inhibitory effect is independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca 2+ mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC does not affect Lyn kinase phosphorylation. Thus, CPC's root mechanism is electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work outlines the biochemical mechanisms underlying the effects of CPC on immune signaling and allows the prediction of CPC effects on cell types, like T cells, that share similar signaling elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.