Abstract

Biofilms affect >80% bacterial infections in human and are usually difficult to eradicate because of their inherent drug resistance. We investigated the effectiveness of antimicrobial blue light (aBL) (wavelength, 415 nm) for inactivating Acinetobacter baumannii or Pseudomonas aeruginosa biofilms in 96-well microplates or infected mouse burn wounds. In vitro, in 96-well microplates, exposure of 24-hour-old and 72-hour-old A. baumannii biofilms to 432 J/cm(2) aBL resulted in inactivation of 3.59 log10 and 3.18 log10 colony-forming units (CFU), respectively. For P. aeruginosa biofilms, similar levels of inactivation-3.02 log10 and 3.12 log10 CFU, respectively-were achieved. In mouse burn wounds infected with 5 × 10(6) CFU ofA. baumannii, approximately 360 J/cm(2) and 540 J/cm(2) aBL was required to inactivate 3 log10 CFU in biofilms when delivered 24 and 48 hours, respectively, after bacterial inoculation. High-performance liquid chromatography analysis revealed the presence of endogenous porphyrins in both A. baumannii and P. aeruginosa TUNEL assay detected no apoptotic cells in aBL-irradiated mouse skin at up to 24 hours after aBL exposure (540 J/cm(2)). aBL has antimicrobial activity in biofilms ofA. baumannii and P. aeruginosa and is a potential therapeutic approach for biofilm-related infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call