Abstract

The control of microbial proliferation is a constant battle, especially in the medical field where surfaces, equipment, and textiles need to be cleaned on a daily basis. Silver nanoparticles (AgNPs) possess well-documented antimicrobial properties and by combining them with a physical matrix, they can be applied to various surfaces to limit microbial contamination. With this in mind, a rapid and easy way to implement a photoinduced approach was investigated for textile functionalization with a silver@polymer self-assembled nanocomposite. By exposing the photosensitive formulation containing a silver precursor, a photoinitiator, and acrylic monomers to a UV source, highly reflective metallic coatings were obtained directly on the textile support. After assessing their optical and mechanical properties, the antimicrobial properties of the functionalized textiles were tested against Escherichia coli (E. coli) and Candida albicans (C. albicans) strains. In addition to being flexible and adherent to the textile substrates, the nanocomposites exhibited remarkable microbial growth inhibitory effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call