Abstract

BackgroundNanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm. Magnetic nanoconjugates loaded with bioactive drugs have the advantage of sustained circulation in the bloodstream and significantly reduced toxicity of therapeutic agents in a precise manner. The well-developed surface chemistry of Fe3O4 has led to the development better tools, promoting them as nanoplatforms with potential technological applications in biomedical sciences.ResultsFe3O4 phytohybrids with Laxmitaru extract as the primary coating and loaded with Eugenol and Ylang-Ylang essential oils were successfully synthesized. The X-ray diffraction technique has revealed the high purity nanoparticle materials, as no additional impurity peaks were observed. Fourier transform infra-red spectra have confirmed the presence of a primary coating of Laxmitaru extract and a secondary layer of essential oil, as additional peaks and broadening are observed in drug-loaded Fe3O4 nanoparticles. Magnetic susceptibility values indicate the material's superparamagnetic nature. Transmission electron microscopy images have ensured that the particles were spherical, monodispersed, and in the range of 4.30 nm to 13.98 nm. Antimicrobial studies show inhibition zones on the microorganisms S. Aureus and E. Coli with enhanced activity. Drug entrapment efficiency studies revealed the encapsulation of drug molecules onto Fe3O4-Laxmitaru composite. Dynamic light scattering studies confirm the increase in hydrodynamic size, indicating the loading of essential oils and the decrease in polydispersity index ensures monodispersed nanoparticles. The antioxidant study showed the essential oils retained their antioxidant activity even after they were conjugated on Fe3O4-Lax composites.ConclusionsLaxmitaru phytochemical-coated Fe3O4 nanoparticles were successfully conjugated with Eugenol and Ylang-Ylang essential oils. Our results provide a model therapeutic approach for the development of new alternative strategies for enhancing antimicrobial and antioxidant therapy, with potential advantages in the field of nanobiomedicine.

Highlights

  • Nanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm

  • Crystallite size measurements were determined from the full width at half maxima (FWHM) of the strongest reflection of (311) peak using the Debye–Sherrer approximation formula, which assumes the small crystallite size to be the cause of line broadening

  • In drug-loaded F­ e3O4, the peak intensity further decreases, which is attributed to the fact that the coating and drug molecules are organic in nature, giving amorphous nature to the X-ray powder diffraction (XRD) patterns, which confirms the presence of coatings

Read more

Summary

Introduction

Nanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm. Magnetic nanoconjugates loaded with bioactive drugs have the advantage of sustained circulation in the bloodstream and significantly reduced toxicity of therapeutic agents in a precise manner. The well-developed surface chemistry of ­Fe3O4 has led to the development better tools, promoting them as nanoplatforms with potential technological applications in biomedical sciences. Among magnetic materials, ­Fe3O4 nanoparticles (NPs) are extensively studied and are considered as promising drug carriers in nanomedicine, owing to their various advantages such as their unique size, excellent biocompatibility, strong affinity, extremely low toxicity, biodegradability, surface reactivity, superparamagnetic nature and other properties making them preferable from traditionally used materials [1,2,3,4,5]. ZnO NPs synthesized through eco-friendly and natural sources has shown promising results as antibacterial, antibiofilm and other biomedical applications [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call