Abstract

Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity against P. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity on P. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity–composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils as P. aeruginosa anti-biofilm. Many samples inhibited P. aeruginosa biofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.

Highlights

  • The great ability of bacteria to colonize new environments is undoubtedly related to biofilm formation

  • This study reports chemical composition, antibacterial and anti-biofilm activity against P. aeruginosa of 89 different Essential oils (EOs) obtained from 3 different plants harvested in different seasons and conditions: Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball (CG) [19], Foeniculum vulgare Miller (FV) [21], and Ridolfia segetum Moris (RS)

  • Fractioned extraction process applied to three different plant species, two of them being monitored in terms of different harvesting periods, showing great differences in EO yields

Read more

Summary

Introduction

The great ability of bacteria to colonize new environments is undoubtedly related to biofilm formation. Biofilms are the cause of persistent infections implicated in 80% or more of all microbial cases, releasing harmful toxins and even obstructing indwelling catheters [1]. Bacteria of clinical relevance—such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii among others—proliferate on medical devices and form biofilms which provide them with up to 1000 times more effective resistance and tolerance to antibiotics in comparison with their planktonic forms [2]. P. aeruginosa is a common Gram-negative bacillus, able to adapt and survive in unfavorable environmental conditions including minimal nutritional sources. It can cause disease in plants and animals, as well as humans. P. aeruginosa is a multidrug resistant pathogen recognized for ubiquity, intrinsically advanced antibiotic resistance mechanisms, and association with serious illnesses—especially hospital-acquired infections such as ventilator-associated pneumonia (VAP) [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call