Abstract

This study aims at the development of electrospun polylactic acid nanofibers (PLLA NFs) incorporating smart daclatasvir-loaded chitosan gelatin nanoparticles to be used as medical textiles. First, smart nanoparticles were prepared through ionic gelation and optimized using Design Expert® software where daclatasvir (DAC), chitosan (CS), and gelatin (GL) amounts were selected to be the independent variables. DAC was used owing to its reported Anti-SARS-CoV-2 activity, CS was chosen due to its antimicrobial activity and GL was used owing to its sensitivity to be hydrolyzed upon exposure to Papain-like protease enzyme (PLpro). The optimum DAC-CS/TAN NPs possessed 109 nm size and 94.44 % entrapment efficiency in addition to sustained drug release for 14 days. Furthermore, upon exposure to PLpro, smart DAC-CS/GL NPs released the whole DAC amount within 3 h. Then, DAC-CS/GL NPs were incorporated within PLLA NFs through electrospinning. Swellability was found to increase gradually reflecting the controlled release of DAC from nanofibers within 3 weeks. Cell viability assessments using human fibroblasts showed that the developed nanofibers possess high biocompatibility. An in-vivo animal model for skin irritation was carried out for two weeks where visual inspection and histopathological investigations showed that neither edema nor erythema were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.