Abstract

The prevalence of antimicrobial-resistant bacteria has become a major challenge worldwide. Methicillin-resistant Staphylococcus aureus (MRSA)-a leading cause of infections-forms biofilms on polymeric medical devices and implants, increasing their resistance to antibiotics. Antibiotic administration before biofilm formation is crucial. Raman spectroscopy was used to assess MRSA biofilm development on solid culture media from 0 to 48 h. Biofilm formation was monitored by measuring DNA/RNA-associated Raman peaks and protein/lipid-associated peaks. The search for an antimicrobial agent against MRSA biofilm revealed that Eugenol was a promising candidate as it showed significant potential for breaking down biofilm. Eugenol was applied at different times to test the optimal time for inhibiting MRSA biofilms, and the Raman spectrum showed that the first 5 h of biofilm formation was the most antibiotic-sensitive time. This study investigated the performance of Raman spectroscopy coupled with principal component analysis (PCA) to identify planktonic bacteria from biofilm conglomerates. Raman analysis, microscopic observation, and quantification of the biofilm growth curve indicated early adhesion from 5 to 10 h of the incubation time. Therefore, Raman spectroscopy can help in monitoring biofilm formation on a solid culture medium and performing rapid antibiofilm assessments with new antibiotics during the early stages of the procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call